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An analytically solvable model of the growth of an intermediate phase between low-soluble components on 

diffusion at grain boundaries involving outflow is suggested. Criteria for a transition from the Fisher regime 

t 1/4 to a parabolic one are established. The formalism suggested is extended to the case of the growth of a 

solid-state solution with an exponential concentration dependence of the diffusion coefficient. 

Although the Fisher solution for the impurity diffusion in a bicrystal and its modification for polycrystals 

have long been known [1-4 ], an analogous problem for the growth of intermediate phases in systems with limited 

solubility has been analyzed, as far as we known, only in [5 ] for the case where the diffusion coefficients for a 

solid-state solution are well in excess of those for a phase. In [5], solutions analogous to a conventional Fisher 

solution have been obtained on the assumption that the diffusion process is quasistationary: 

OCb(t, y) = 0, (1) 
Ot 

where Cb is the grain boundary concentration of component B in the phase, and the Y axis runs along a grain 

boundary (GB). In the form of Eq. (1) this assumption is not fulfilled; it is inexact since at a fixed y the quantity 

Cb(y) changes from C1 to C1 + AC1 (within the limits of the homogeneity interval) and incorrectly predicts the 

form of the phase wedge. The assumption 

OCb(~) = 0 ,  (2) 
dt 

is more exactly fulfilled, where ~ = y/yo(t),  yo(t) is the maximum length of the phase wedge. For instance, in the 

middle of the phase wedge Cb is virtuelly unchanged throughout the period of phase growth (the homogeneity 

interval is from C1 to C1 + AC1). Use of assumption (2), as shown below, leads to correct prediction of the form 

of the phase wedge. 
Our developed model is rather simple, and it may be generalized to the case of growth of several phases 

and allows prediction of the phase composition and sufficiently easy calculation of diffusion coefficients. 

The model is based on the following assumptions: 
1. An intermediate phase forms at first on the basis of the GB; the latter, transforming from the boundary 

A-A to the boundary I-I, remains, due to easy influx with a diffusion coefficient Db and having a thickness of 

= 1 nm (i.e., the GB is not overgrown with a new phase and does not bifurcate). 

2. Formed phase I broadens normal to the GB due to volume diffusion with a diffusion coefficient D. 

3. At all thee points of the formed I-A phase boundary between the broadening phase I and the matrix A 
the concentration of the component B is C1 on the side of phase I and is zero on the side of phase A (solubility of 

B in A is ignored). 
4. Consideration is given to the following variants: 

a) following [5 ], we assume that outflow from the GB is the same at all GB points: 

Cherkassy Engineering-Technological Institute, Cherkassy Pedagogical Institute. Institute of Metallurgy, 

Russian Academy of Sciences, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 65, No. 3, pp. 311- 

316, September, 1993. Original article submitted May 22, 1992. 

876 1062-0125/93/6503-0876512.50 �9 1994 Plenum Publishing Corporation 



OC AC' ACt 
= -- ; Xo = x (t, 0); (3) 

Ox x (t, y) xo 

b) following [5 ], in which a linear approximation for Cb(Y) is shown to be a permissible one for a rigorous 

solution, we also assume here that Cb(y) changes approximately linearly with y. 

Conditions 4a) and 4b) will be considered independently and then the results obtained will be compared. 

5. A flow in the volume of a phase wedge normal to the GB is constant along x (a corresponding property 

is proved in [6 ]) in a reference system associated with the moving nose of the wedge. 

At first, we employ assumption 4a). 

The balance equation of the flows at the nose of the growing phase wedge is as follows 

Ct dY----2-~ = DbAC------------~ 2 Vo(Of D ac (t, x/y) dy, (4) 
dt Yo 6 3 o c)x 

where the second term on the r.h.s, accounts for the decrease of the flow, reaching the nose, due to lateral outflow 

into the volume of the phase. 

Taking into consideration assumption (3) on the outflow being the same, we obtain from (4) 

C1 dY----A-~ = DbAC~ 2yo (t) DAC1 (5) 
dt Yo 6 Xo (t) 

The dependence x0(t) is determined from the usual equation for transverse motion of the phase boundary 

e l  m 

so that xo(t) grows according to the parabolic law 

dxo DAC1 
J 

dt xo 

1/2 (t) = ( 2DAC1 t 
Xo 

\ C1 

Thus, the equation for y0(t) has the simple form 

dy o A Yo DbAC~ 1 ( 2DACI~ I/~. 
. . . .  B t--r~-;  A = - - ;  B = ~, }, (6) 

dt go C1 6 C1 

Its general solution is as follows: 

B 4 B  2 

In the case of frozen outflow ((DACIt) 1/2 << c~, i.e., Bt 1/2 << 1), this gives the parabolic law (regime A) 

= 2At. 

On passing to large times of annealing, t >> 1/B 2, we arrive at the Fisher regime of diffusion (regime B): 

A 1~2( 1 ) A y~ : -~ t 1 - ,~, t 1/2, 
Bt ~/2 B 

_ t 1/4 i.e., Y0 . The characteristic time of the transition from A to B is 

tA--B "~  C162/2DAC1, 

which agrees with an analogous estimate for tracer diffusion [4 ]. Here the corresponding length of the phase wedge is 

YA--B ~" ~ (Dbl2D) 1/2 (7) 

877 



/i 
I III 

~ _ ~  

O x(t,y) Xo(~) 
! 

go 

Y 

2 

Fig. 1. Kinetics of phase growth along a GB, comparison with the kinetics of 

purely GB growth, and phase growth by volume diffusion. 

Fig. 2. Form of the phase wedge calculated in the present work (1) and in 
[5 ] (2). 

X 
}m, 

Since Db/D = 103- 105 [7 ], YA-B -- 0.03-0.3 ffm. Obviously the phase layer grows not only in the form of a wedge 

along the GB but also through diffusion in the direction parallel to the GB according to the law kt 1/2. We may 

determine YA-B at which the parabolic volume diffusion surpasses the boundary diffusion, i.e. ,when kt 1/2 --- 7 tL/4 

(Fig. 1): 
6 

YB--C ~-- - -  DtJD "1 0,5 - -  50 tim. (8) 
2 

thus, the phase wedge grows in the Fisher regime within the length range 

6 [ Db ~1/2 Db 
/-2b--) <yo< --2D 

Now we use assumption 4b). Then 

OCb/Oy = - -  AC~/yo (t), Cb (t, ~) = C 1 + A C '  ---- C 1 --~ (1 - -  ~) AC1, 

oc  (x, ~)/Ox = (1 - -  ~) AC~/x (t, ~), 

(9) 

(10) 

where x(t, ~) is the profile of the phase boundary. 

With the assumptions made, the balance equations for the diffusion along the GB and for the motion of 

the phase boundaries normal to the GB are of the form 

dyo _ DbAC1 2 Dy ~ ~ ACl(I - -  

dt Yo - -  6 -- ~ ~) d~, (11) C1 
0 

where the r.h.s, is the flow outgoing along the boundary, the first term in it is the incoming flow, while the last 

term accounts for outflow from the GB into the volume of the growing phase: 

C10x( t '  Y) - - D  OC DACI [ Y ~ (12) 
= x k 1 -  x(t,  y T )  Ot 

Now passing to the new variable ~, we obtain from (12) 
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CI Ox (t, ~) --_ Cx~ 1_~ dyo Ox _~_ DAC_______2~ (1 - -  ~). (13) 
Ot go dt O~ x 

Solving the system of differential equations (11)-(13) is a complicated problem. But as has been shown above, in 
a wide range of y values we may use the Fisher law Y0 --V tl/4 in Eq. (13), too. Then it will acquire the form 

Ox(t, ~____~) =fl~__ O_____~x + DAC1 (1- -~) ,  0 < ~ < 1 ,  (14) 
Ot 4t O~ C1X 

x(t, ~---~ 1) = 0. (15) 

It is easy to verify that a solution of Eq. (14), satisfying boundary condition (15), is the function 

x(t' ~ )=[  2DACI t (  1 -  4 ~ + C ,  3 --~I ) 1  '/2" ~ (16) 

The profile of the phase wedge x(~) --, x(y) calculated according to Eq. (16) is shown in Fig. 2. The vertex angle 

01 is determined from the formula 

tg0~=--O-- f - -xu=u--  1 Ox I _ I Ox I = 
Oy Yo O~ ~-,1 yt 1/4 "~ ~-,! 

_ (8DAC1) ' /2 t , /4  (17) 

It increases with time analogously to the Fisher solution [7 ]. 
In order to determine the coefficient Yl, we substitute the dependence found into Eq. (11) for the growth 

7t 1/4 y0(t). The law Yo = must be obtained asymptotically in a quasi-stationary regime when the overwhelming 

portion of the incoming flow DbAC l /y0 is used for drawing-off and only a negligible part is employed for bringing 
the wedge nose into motion. Then instead of (11) we have 

D1ACl 2 l 1--~ d~. (18) 
Y~ -{ x(t, ~----~ Yo 6 o 

Substituting the function from (10) and yo = 7t 1/4, we first make sure that the time t is shortened, which proves 
self-consistency of the scheme, and secondly determine yl: 

w = (1 - -  

0 ] /2  --8/3~ + 2/3~ ~ 

~ (  D~62ACx2DCx ~ 1  )1/4 (19) 

Here the volume of the intermediate phase per unit length grows according to the law 

9'0 1 

AV = J" x (t, y) dy ---- Y0 f x (t, g) dg ---- const t 3/4. (20) 
0 0 

Now we compare the results obtained using assumptions 4a) and 4b). If assumption 4b) is made, the outflow from 
the GB is not constant but changes by no more than 30%. Indeed, the quantity 

a C '  a c 1  (1 - -  

2DACt t ( x (t, ~) | /  C1 _ _  

4 ~ 1 ) 
a - 5 -  
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differs from (3) by the factor ( 1 -~ ) /~ /1 -4 /3~  + 1/3~ ~-. This factor changes from unity at ~ = 0 to 0.71 at ~ --, 1, 
with Yt differing from 7 by approximately 8 %. 

In Fig. 2 the profile of the phase calculated in [5] is shown by a dashed line. As is seen, our solution 

demonstrates that the profile must be convex and not concave. It is just a convex profile that has been 

experimentally determined in [5 ] for In diffusion in an Sn-Ge bicrystal and in [8 ] for Zn diffusion in an Fe + 5 

at. ~ Si bicrystal at a temperature near 900~ The authors of [12] have succeeded in reproducing the "ideal" 

Fisher regime, i.e., without "spurious" volume flows along the Y axis. Experimental data of [8 ] show that 01 > 02, 

and not the reverse, which confirms the validity of our model. 

After attaining the critical thickness YB-C, the regime of phase growth must change since the assumptions 

of the model are no longer valid, i.e. the concentration profile along X has a more gentle slope than along Y and 

the flow through the phase will be directed along the Y axis. Eventually the phase will grow along the Y axis like 

a parabola. The angle 0 continues to increase, the front becomes almost flat, and the phase grows according to a 

parabolic law as if no grain boundary existed at all. Indeed, such a result has been observed in [8] for diffusion 

of tin in an Fe + 5 at % Si bicrystal at a temperature of about 800~ The thickness of the diffusion layer amounted 

to approximately 30 #m. As is obvious, even for the bicrystal at Y0 > 100/zm the phase will grow like a parabola. 

For polycrystals, this result is valid if Ycr < R, where R is the radius of a crystal grain. If R < Ycr, then the 
_ t  1/4 ~ t  1/2 criterion for passage from the law y to y is as follows [4 ]: 

Ycr ~ (Db6R/D) 1/2. (21) 

At R -~ 10Hm Ycr ~ 3-30Hm,  at R ~ 1Hm Ycr ~ 1-10Hm, and at R ~ 0.1Hm Ycr ~ 0.3-3/zm. Therefore in 
experiments on the phase growth in flat samples of the Cu-Zn system [9, 10] the parabolic law of phase growth is 

fulfilled although the samples were polycrystalline, since R ~ 1 Hm and y > 10/zm. 

Under definite conditions the scheme suggested above may be employed to describe the growth of the 

solid-state solution of B in A. From the experiment in [11 ] it is known that in many cases the diffusion coefficient 

of B in a solid-state solution based on A abruptly (often exponentially) increases with the concentration of B. In 

this case, as shown in [12 ], the concentration profile has a characteristic F-shape that resembles a concentration 

drop at the grain boundary, passing into a plateau corresponding to a phase layer. Although the separation of the 

solid-state solution into a "phase" with the boundaries of "existence" C1 and C1 + AC1 and the pure component A 

is somewhat ambiguous, the ambiguity does not affect the results of calculation of the kinetics of growth of the 

solid-state solution layer. 
The ambiguity in determination of C1 exists for phases with a wide homogeneity region as well which are 

also characterized by a strong concentration dependence D(C). In particular, ?-brass CusZn 8 also exhibits a F- 

shaped profile [9, 10]. However the ambiguity in determination of C1 has not affected at all the accuracy of 

calculations performed in [9, 10 ]. 

In the case D(C) = const (when a solution is close to ideal and the melting points of A and B are almost 

the same) one may employ the Fisher model for bicrystals or the model of spheres for polycrystals [4 ]. 

To sum up, it can be said that: 
1) the problem of phase growth in a bicrystal with constant outflow along the grain boundary is solved 

analytically; 
2) the time of transition from the A regime to the B regime and the corresponding length of the phase 

wedge are determined; 
3) it is shown that the assumptions on the linearity of the concentration profile along the grain boundary 

and on the constant outflow from the grain boundary do not contradict each other and may be equally employed 

to describe phase growth along the grain boundary; 
4) the phase wedge is shown to have a convex, and not a concave, as is common to assume, form; 

5) the time of transition from the B regime to the C regime and the corresponding length of the phase 

wedge are determined; 
6) it is shown that with a large time of annealing a front of the phase layer flattens and the phase grows 

without "perceiving" the grain boundary. 
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N O T A T I O N  

t, annealing time; C b, atomic concentration of the diffusant at the grain boundary (GB); Y0, maximum 
length of the phase wedge; y, coordinate along the GB; Db, GB diffusion coefficient; 6, GB thickness; D, volume 

diffusion coefficient of the growing phase; C1, C1 + AC1, boundary concentrations of component B in intermediate 
phase I; 7, constant of the velocity of motion of the phase wedge vertex; 01, vertex angle of the wedge of phase I; 

02, base angle of the wedge. 
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